numpy.pad() - ( Common NumPy Functions )
Heading h2
Syntax
numpy.pad(array, pad_width, mode='constant', **kwargs)
Example
import numpy as np
arr = np.array([[1, 2], [3, 4]])
padded_arr = np.pad(arr, ((2, 2), (3, 3)), 'constant')
print(padded_arr)
Output
array([[0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 1, 2, 0, 0],
[0, 0, 0, 3, 4, 0, 0],
[0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0]])
Explanation
The numpy.pad()
function is used to pad an array with values. The function takes in three arguments: the input array, pad_width
, and the padding mode.
pad_width
is a tuple containing the number of values padded before and after the dimensions of the input array. The padding values are filled with zeros by default.
The padding mode argument determines how the padding values are filled in. The default mode is constant
, meaning the values are filled with a constant value.
Use
The numpy.pad()
function is useful for adding borders or padding to an image, as well as for resizing arrays. This function can be used in image processing applications, visualizing data, and data analysis.
Important Points
- The
numpy.pad()
function is used to pad an array pad_width
is a tuple that specifies the padding width before and after each dimension of the input array- The padding mode determines how the padding values are filled in
- The
numpy.pad()
function can be used in image processing applications, visualizing data, and data analysis
Summary
In conclusion, the numpy.pad()
function is a useful NumPy function for padding and adding borders to arrays. It takes an array, pad width, and padding mode. pad_width
is a tuple that specifies the padding width before and after each dimension of the input array. The padding mode determines how the padding values are filled in. This function can be used in image processing applications, visualizing data, and data analysis.