Reset Index - ( Pandas Indexing )
Heading h2
Syntax
DataFrame.reset_index(level=None, drop=False, inplace=False, col_level=0, col_fill='')
Example
import pandas as pd
# create a dataframe
df = pd.DataFrame({'Name':['John', 'Emily', 'Charlie'], 'Age':[25, 30, 35]})
# reset index
df = df.reset_index()
print(df)
Output
index Name Age
0 0 John 25
1 1 Emily 30
2 2 Charlie 35
Explanation
The reset_index()
method is a Pandas function used to reset the index of a dataframe to a default sequential numerical index. It returns a new dataframe object with the index reset.
In the above example, a simple dataframe is created with columns 'Name' and 'Age'. The reset_index()
method is used to reset the index to a default sequential numerical index starting from 0.
Use
The reset_index()
method is used to reset the index of a Pandas dataframe to a default sequential numerical index. This can be useful when dealing with dataframes that have non-sequential or non-unique indexes.
Important Points
- The
reset_index()
method resets the index of a Pandas dataframe to a default sequential numerical index - It returns a new dataframe object with the index reset
- The original dataframe is not modified by default. However, it can be modified in place using the
inplace=True
argument.
Summary
In conclusion, the reset_index()
method is a useful function in Pandas for resetting the index of a dataframe to a default sequential numerical index. It returns a new dataframe object with the index reset. The method can be useful when dealing with dataframes that have non-sequential or non-unique indexes. Optionally, the inplace=True
argument can be used to modify the original dataframe object.