DataFrame.fillna() - ( Pandas Data Operations and Processing )
Heading h2
Syntax
DataFrame.fillna(value=None, method=None, axis=None, inplace=False, limit=None, downcast=None)
Example
import pandas as pd
df = pd.DataFrame({'A': [1, 2, None, 4], 'B': [5, 6, 7, None]})
# filling missing values with 0
df.fillna(0, inplace=True)
print(df)
Output
A B
0 1.0 5.0
1 2.0 6.0
2 0.0 7.0
3 4.0 0.0
Explanation
DataFrame.fillna()
is a Pandas function that replaces missing values in a DataFrame with a specified value or method. It takes in various arguments, such as the value to be used for filling missing values, the method for filling missing values, and the axis along which to fill missing values.
In the above example, we create a DataFrame with missing values and then use df.fillna()
to fill the missing values with 0. We do this in place by setting inplace=True
.
Use
The DataFrame.fillna()
function can be used to fill missing values in a Pandas DataFrame with a specified value or method. This is useful in data cleaning and preprocessing operations, as missing data can be problematic for some machine learning algorithms.
Important Points
DataFrame.fillna()
is a Pandas function that replaces missing values in a DataFrame with a specified value or method- It takes in various arguments, such as the value to be used for filling missing values, the method for filling missing values, and the axis along which to fill missing values
inplace
parameter is used to indicate whether to replace the missing values in the existing DataFrame or to create a new one
Summary
In conclusion, the DataFrame.fillna()
function in Pandas is used to fill missing values in a DataFrame with a specified value or method. It is an important data cleaning and preprocessing tool that can help to make data more suitable for machine learning algorithms. The function can take various arguments, such as the value to be used for filling missing values and the axis along which to fill missing values.