Datetime - ( Pandas Time Series )
Heading h2
Syntax
pandas.to_datetime(arg, errors='raise', dayfirst=False, yearfirst=False, utc=None, format=None, exact=True, unit=None, infer_datetime_format=False, origin='unix', cache=True)
Example
import pandas as pd
date_str = '2021-09-22'
date = pd.to_datetime(date_str)
print(date)
Output
2021-09-22 00:00:00
Explanation
Pandas is a powerful library for data manipulation and analysis in Python. It provides various functions for working with date and time data, including the to_datetime()
function, which can be used to convert a string or integer to a pandas datetime object.
In the above example, we use pd.to_datetime()
to convert a string representation of a date to a pandas datetime object. The to_datetime()
function automatically recognizes the date format and converts it to a standardized format.
Use
pd.to_datetime()
is useful for converting date and time data to a standardized format that can be easily manipulated and analyzed using Pandas. It can be used in various applications such as financial analysis, time series analysis, and machine learning.
Important Points
- Pandas provides the
to_datetime()
function for converting date and time data to a standardized format - The
to_datetime()
function can be used to convert a string or integer to a pandas datetime object - The function automatically recognizes the date and time format and converts it to a standardized format
- The converted datetime object can be easily manipulated and analyzed using Pandas
Summary
In conclusion, the pd.to_datetime()
function in Pandas is a powerful tool for working with date and time data in Python. It can be used to convert date and time data to a standardized format that can be easily manipulated and analyzed using Pandas. The function is useful in various applications such as financial analysis, time series analysis, and machine learning.