DataFrame.mean() - ( Pandas DataFrame Basics )
Heading h2
Syntax
DataFrame.mean(axis=None, skipna=None, level=None, numeric_only=None, **kwargs)
Example
import pandas as pd
df = pd.DataFrame({'A': [1, 2, 3],
'B': [4, 5, 6],
'C': [7, 8, 9]})
print(df.mean(axis=0))
Output
A 2.0
B 5.0
C 8.0
dtype: float64
Explanation
The DataFrame.mean()
function returns the mean (average) of values for the requested axis. You can request the mean across all columns (axis=0
) or across all rows (axis=1
).
By default, DataFrame.mean()
skips missing values (NaN
), but this can be changed by setting skipna=False
.
You can also specify which columns or rows to include in the mean calculation by setting the level
parameter.
Use
The DataFrame.mean()
function is useful for calculating summary statistics of a Pandas DataFrame. For example, you can use it to calculate the average value of a specific column or across all columns.
Important Points
- The
DataFrame.mean()
function calculates the mean of values for the requested axis - By default,
skipna=True
andlevel=None
- You can choose which axis to calculate the mean (
axis=0
for columns,axis=1
for rows) - You can specify which columns or rows to include in the mean calculation by setting the
level
parameter
Summary
In conclusion, the DataFrame.mean()
function is a useful method for calculating the mean of values in a Pandas DataFrame. It can be used to calculate the average value of a specific column or across all columns. By default, the function skips missing values, but this behavior can be changed by setting skipna=False
. Overall, DataFrame.mean()
is a useful tool for calculating summary statistics of a DataFrame.