matplotlib
  1. matplotlib-line-plots

Line Plots - ( Basic Matplotlib )

Heading h2

Syntax

import matplotlib.pyplot as plt

x = [1, 2, 3, 4, 5]
y = [2, 4, 6, 8, 10]

plt.plot(x, y)
plt.show()

Example

import matplotlib.pyplot as plt

x = [1, 2, 3, 4, 5]
y = [2, 4, 6, 8, 10]

plt.plot(x, y)
plt.title("Line Plot Example")
plt.xlabel("X-axis")
plt.ylabel("Y-axis")
plt.show()

Output

A line plot is displayed with the specified x and y axis labels, and a title.

Explanation

A line plot is a basic visualization technique in matplotlib used to display the relationship between two variables. In this plot, points are connected using lines to show the trend in data.

plt.plot() is a function used to create a line plot in matplotlib. It takes in two variables - the x-axis values and the y-axis values. These values can be specified as a Python list, NumPy array, or pandas Series object.

In the above example, we pass two Python lists x and y to the plt.plot() function to create a line plot. We also add a title using plt.title(), and add x and y axis labels using plt.xlabel() and plt.ylabel().

Use

Line plots are a simple and effective way to visualize the relationship between two variables. They are commonly used in data analysis, scientific research, and in visualizing time series data.

Important Points

  • Line plots are a basic visualization technique used to display the relationship between two variables
  • plt.plot() is a function used to create line plots in matplotlib
  • x and y-axis values can be specified as Python lists, NumPy arrays, or pandas Series objects
  • plt.title(), plt.xlabel(), and plt.ylabel() functions can be used to add a title and axis labels to the plot

Summary

In conclusion, line plots are a basic visualization technique used to display the relationship between two variables using a line to connect the points. Matplotlib's plt.plot() function can be used to create line plots. Labels and a title can be added to the plot using plt.title(), plt.xlabel(), and plt.ylabel() functions.

Published on: