matplotlib
  1. matplotlib-error-bars

Error Bars - ( Advanced Plotting Techniques )

Heading h2

Syntax

plt.errorbar(x, y, yerr=None, xerr=None, fmt='', ecolor=None, elinewidth=None, capsize=None, capthick=None)

Example

import matplotlib.pyplot as plt
import numpy as np

x = np.arange(0, 10, 1)
y = x**2
error = np.random.rand(10)

plt.errorbar(x, y, yerr=error, fmt='o')
plt.show()

Output

A scatter plot is displayed with error bars on each point.

Explanation

Error bars are a graphical representation of the variability of data and are commonly used in scientific research. They indicate the confidence or uncertainty in the data being represented. Matplotlib provides the plt.errorbar() function to plot error bars on top of a scatter plot.

In the above example, we create a scatter plot of x and y using the plt.scatter() function and plot error bars using the plt.errorbar() function. We generate random errors in y using np.random.rand(10) and pass them to the yerr parameter of plt.errorbar().

Use

Error bars are useful in visualizing the variability of data and can be used in various scientific and statistical applications. They allow for easy comparison of data sets and enable users to draw conclusions based on the level of variability observed.

Important Points

  • Error bars are a graphical representation of the variability of data
  • They are commonly used in scientific research
  • Matplotlib provides the plt.errorbar() function to plot error bars on top of a scatter plot
  • Error bars can be customized using various parameters such as yerr, xerr, fmt, ecolor, elinewidth, capsize, and capthick

Summary

In conclusion, error bars are a useful visualization technique for analyzing the variability of data. The plt.errorbar() function in Matplotlib provides an easy way to plot error bars on top of a scatter plot. By customizing the various parameters provided, users can create highly informative plots that enable effective data analysis.

Published on: