Feature Extraction - ( Style Transferring with PyTorch )
Heading h2
Syntax
class ContentLoss(nn.Module)
class GramMatrix(nn.Module)
class StyleLoss(nn.Module)
class Normalization(nn.Module)
Example
class StyleTransferModel(nn.Module):
def __init__(self, cnn, normalization_mean, normalization_std, style_layers, content_layers):
super(StyleTransferModel, self).__init__()
self.normalization = Normalization(normalization_mean, normalization_std).to(device)
self.content_losses = []
self.style_losses = []
self.model = nn.Sequential(self.normalization)
i = 0
for layer in cnn.children():
if isinstance(layer, nn.Conv2d):
i += 1
name = f'conv_{i}'
elif isinstance(layer, nn.ReLU):
name = f'relu_{i}'
layer = nn.ReLU(inplace=False)
elif isinstance(layer, nn.MaxPool2d):
name = f'pool_{i}'
elif isinstance(layer, nn.BatchNorm2d):
name = f'bn_{i}'
else:
raise RuntimeError('Unrecognized layer')
self.model.add_module(name, layer)
if name in content_layers:
target = self.model(content_img).detach()
content_loss = ContentLoss(target)
self.model.add_module(f'content_loss_{i}', content_loss)
self.content_losses.append(content_loss)
if name in style_layers:
target_feature = self.model(style_img).detach()
style_loss = StyleLoss(target_feature)
self.model.add_module(f'style_loss_{i}', style_loss)
self.style_losses.append(style_loss)
def forward(self, x):
self.model(x)
return self
def get_style_losses(self):
return self.style_losses
def get_style_scores(self, input_img):
self.forward(input_img)
style_scores = [sl.get_score() for sl in self.style_losses]
return style_scores
def get_content_loss(self):
return self.content_losses[0].get_score()
Output
The output of the above code will be a StyleTransferModel
object.
Explanation
In style transfer, feature extraction is a crucial part of the process. This involves extracting features from the input image and the style image, and using these to calculate the style and content losses.
ContentLoss
, StyleLoss
, GramMatrix
, and Normalization
are custom PyTorch modules used in the feature extraction process. ContentLoss
measures the difference between the feature maps of the input image and the content image. StyleLoss
measures the difference between the style images and the input image, and the GramMatrix
is used to calculate style representation of the feature maps. Normalization
is used to normalize the input image.
The StyleTransferModel
is a complete model for performing style transfer, and it uses the custom modules described above for feature extraction.
Use
The StyleTransferModel
class can be used to perform style transfer on any set of input and style images.
Important Points
- Feature extraction is a crucial part of style transfer
- Custom PyTorch modules such as
ContentLoss
,StyleLoss
,GramMatrix
, andNormalization
are used to extract features from the input and style images StyleTransferModel
is a complete model for performing style transfer that uses these custom modules for feature extraction
Summary
In conclusion, feature extraction is a crucial part of style transfer and involves extracting features from the input and the style image. Custom PyTorch modules such as ContentLoss
, StyleLoss
, GramMatrix
, and Normalization
are used for feature extraction. The StyleTransferModel
is a complete model for performing style transfer that uses these custom modules for feature extraction. It can be used to perform style transfer on any set of input and style images.